APPENDIX A

General Guidelines for Choosing Personal Protective Equipment

1. Description and Use of Eye/Face Protectors

a. **Safety Glasses.** Protective eyeglasses are made with safety frames, tempered glass or plastic lenses, temples and side shields which provide eye protection from moderate impact and particles encountered in job tasks such as carpentry, woodworking, grinding, scaling, etc. Safety glasses are also available in prescription form for those persons who need corrective lenses.

b. **Single Lens Goggles.** Vinyl framed goggles of soft pliable body design provide adequate eye protection from many hazards. These goggles are available with clear or tinted lenses, perforated, port vented, or non-vented frames. Single lens goggles provide similar protection to spectacles and may be worn in combination with spectacles or corrective lenses to insure protection along with proper vision.

c. **Welders/Chippers Goggles.** These goggles are available in rigid and soft frames to accommodate single or two eyepiece lenses.
 1. Welders goggles provide protection from sparking, scaling, or splashing metals and harmful light rays. Lenses are impact resistant and are available in graduated shades of filtration.
 2. Chippers/Grinders goggles provide eye protection from flying particles. The dual protective eye cups house impact resistant clear lenses with individual cover plates.

d. **Face Shields.** These normally consist of an adjustable headgear and face shield of tinted/transparent acetate or polycarbonate materials, or wire screen. Face shields are available in various sizes, tensile strength, impact/heat resistance and light ray filtering capacity. Face shields will be used in operations when the entire face needs protection and should be worn to protect eyes and face against flying particles, metal sparks, and chemical/biological splash.

e. **Welding Shields.** These shield assemblies consist of vulcanized fiber or glass fiber body, a ratchet/button type adjustable headgear or cap attachment and a filter and cover plate holder. These shields will be provided to protect workers’ eyes and face from infrared or radiant light burns, flying sparks, metal spatter and slag chips encountered during welding, brazing, soldering, resistance welding, bare or shielded electric arc welding and oxyacetylene welding and cutting operations.
Eye and Face Protection Selection Chart

<table>
<thead>
<tr>
<th>Source</th>
<th>Assessment of Hazard</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPACT - chipping, grinding, machining, drilling, chiseling, riveting, sanding, etc.</td>
<td>Flying fragments, objects, large chips, particles, sand, dirt, etc.</td>
<td>Spectacles with side protection, goggles, face shields. For severe exposure, use face shield over primary eye protection.</td>
</tr>
<tr>
<td>CHEMICALS - Acid and chemicals handling</td>
<td>Splash, Irritating mists</td>
<td>Goggles, eyecup and cover types. For severe exposure, use face shield over primary eye protection. Special-purpose goggles.</td>
</tr>
<tr>
<td>DUST - Woodworking, buffing, general dusty conditions</td>
<td>Nuisance dust</td>
<td>Goggles, eyecup and cover types.</td>
</tr>
<tr>
<td>LIGHT and/or RADIATION</td>
<td>Optical radiation</td>
<td>Welding helmets or welding shields. Typical shades: 10-14</td>
</tr>
<tr>
<td>Welding - electric arc</td>
<td>Optical radiation</td>
<td></td>
</tr>
<tr>
<td>Welding - gas</td>
<td>Optical radiation</td>
<td></td>
</tr>
<tr>
<td>Cutting, torch brazing, torch soldering</td>
<td>Optical radiation</td>
<td></td>
</tr>
<tr>
<td>Glare</td>
<td>Poor vision</td>
<td></td>
</tr>
</tbody>
</table>
2. Head Protection

Head injuries are caused by falling or flying objects, or by bumping the head against a fixed object. Head protectors, in the form or protective hats, must resist penetration and absorb the shock of a blow. The shell of the protective hat is hard enough to resist the blow and the headband and crown straps keep the shell away from the wearer’s skull. Protective hats can also protect against electrical shock.

Protective hats are made in the following types and classes:
- Type I - Helmets with a full brim.
- Type 2 - Brimless helmets with a peak extending forward from the crown.
- Class A - General service, limited voltage. Intended for protection against impact hazards. Used in mining, construction, and manufacturing.
- Class B - Utility service, high voltage. Used by electrical workers.
- Class C - Special service, no voltage protection. Designed for lightweight comfort and impact protection. Used in certain construction, manufacturing, refineries, and where there is a possibility of bumping the head against a fixed object.

3. Foot Protection

There are many types and styles of protective footwear and it’s important to realize that a particular job may require additional protection other than listed here. Footwear that meets established safety standards will have an American National Standards Institute (ANSI) label inside each shoe.

a. **Steel-Reinforced Safety Shoes.** These shoes are designed to protect feet from common machinery hazards such as falling or rolling objects, cuts, and punctures. The entire toe box and insole are reinforced with steel, and the instep is protected by steel, aluminum, or plastic materials. Safety shoes are also designed to insulate against temperature extremes and may be equipped with special soles to guard against slip, chemicals, and/or electrical hazards.

b. **Safety Boots.** Safety boots offer more protection when splash or spark hazards (chemicals, molten materials) are present:
 - When working with corrosives, caustics, cutting oils, and petroleum products, neoprene or nitrile boots are often required to prevent penetration.
 - Foundry or "Gaiter" style boots feature quick-release fasteners or elasticized insets to allow speedy removal should any hazardous substances get into the boot itself.
 - When working with electricity, special electrical hazard boots are available and are designed with no conductive materials other than the steel toe (which is properly insulated).
4. Hand Protection

Skin contact is a potential source of exposure to toxic materials; it is important that the proper steps be taken to prevent such contact. Most accidents involving hands and arms can be classified under four main hazard categories: chemicals, abrasions, cutting, and heat. There are gloves available that can protect workers from any of these individual hazards or any combination thereof.

Gloves should be replaced periodically, depending on frequency of use and permeability to the substance(s) handled. Gloves overtly contaminated should be rinsed and then carefully removed after use.

Gloves should also be worn whenever it is necessary to handle rough or sharp-edged objects, and very hot or very cold materials. The type of glove materials to be used in these situations include leather, welder’s gloves, aluminum-backed gloves, and other types of insulated glove materials.

Consideration in the selection of gloves for use against chemicals must be given, if possible, to the exact nature of the substances to be encountered. Read instructions and warnings on chemical container labels and MSDSs before working with any chemical. All glove materials are eventually permeated by chemicals. However, they can be used safely for limited time periods if specific use and other characteristics (i.e., thickness and permeation rate and time) are known.

Careful attention must be given to protecting your hands when working with tools and machinery. Power tools and machinery must have guards installed or incorporated into their design that prevent the hands from contacting the point of operation, power train, or other moving parts. To protect hands from injury due to contact with moving parts, it is important to:

- Ensure that guards are always in place and used.
- Always lock-out machines or tools and disconnect the power before making repairs.
- Treat a machine without a guard as inoperative; and
- Do not wear gloves around moving machinery, such as drill presses, mills, and grinders.

The following is a guide to the most common types of protective work gloves and the types of hazards they can guard against:

a. Disposable Gloves. Disposable gloves, usually made of light-weight plastic, can help guard against mild irritants.

b. Fabric Gloves. Made of cotton or fabric blends are generally used to improve grip when handling slippery objects. They also help insulate hands in mild heat or cold.
c. **Leather Gloves.** These gloves are used to guard against injuries from sparks or scraping against rough surfaces. They are also used in combination with an insulated liner when working with electricity.

d. **Metal Mesh Gloves.** These gloves are used to protect hands from accidental cuts and scratches. They are used most commonly by persons working with cutting tools or other sharp instruments.

e. **Aluminized Gloves.** Gloves made of aluminized fabric are designed to insulate hands from intense heat. These gloves are most commonly used by persons working molten materials.

f. **Chemical Resistance Gloves.** These gloves may be made of rubber, neoprene, polyvinyl alcohol or vinyl, etc. The gloves protect hands from corrosives, oils, and solvents.